skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hussein Zangoti, Alex P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The adoption of blockchain in the Internet of Things (IoT) has been increasing due to the various benefits that blockchain brings, such as security and privacy. Current blockchain models for mobile IoT assume there are fixed, powerful edge devices capable of providing global communication to all the nodes in the network. However, due to the mobile nature of IoT or network partitioning problems (NPP), nodes can move out of a cell area and split into smaller independent peer-to-peer subnetworks. Existing blockchain structures either do not support the network partitioning problem or have limitations. This paper introduces a multidimensional, graph-based blockchain structure, that utilizes k-dimensional spatiotemporal space, to address the challenges of applying blockchain in mobile networks with limited resources. Experimental results show that a multidimensional blockchain structure can improve scalability and efficiency as the blockchain grows in size, similar to logarithmic growth, and reduce the longest chain length by more than 99.99% compared to the traditional chain-based blockchain structure. 
    more » « less